Session: Simulators and evaluations

Rapporteurs: Yuhi Nakamura and Takamichi Iguchi

1. Tempei Hashino (Kouchi Tech. Univ.) Uncertainty in the simulated cloud radar signals from GCMs

- Introduction of Joint Simulator for Satellite Sensors (J-SIM) and its new features.
- Uncertainties of subgrid generator is estimated with NICAM. SCOPS overestimates precipitating subgrid ratio.
- Uncertainties of subgrid value determination. Generalized Gamma distribution would be better for precipitation mass flux.

2. Robert Pincus (Columbia University)

Observation proxies for high-resolution simulation and satellite observation

- The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) was originally developed as proxies for (coarse-resolution) model assessment.
- Relationship between the proxies and simulators, and proxy precision and underlying uncertainty were introduced.
- Data assimilation approach is effective to understand the underlying uncertainty.
- COSP application to km-scale models, the source of potential error and uncertainty are discussed.

3. Pavlos Kollias (Stony Brook Univ.) Harmonizing Simulated and Observed Views of Convect

Harmonizing Simulated and Observed Views of Convective Dynamics: EarthCARE, INCUS and AOS and the Role of Instrument Simulators

- Introduction of instrumental simulators for EarthCARE and AOS/PMM radars, aimed for GSRMs.
- Retrieval of doppler velocity is improved using 'Particle sedimentation rate'
- How about upward motion in cumulus?: TIWP helps to estimate, but attenuation and sampling are problem.
- Comparison between CPR and PMM simulations, instrumental specifications such as footprint, make difference.

4. Silke Gross (DLR, Oberpfaffenhofen)

Preparing for EarthCARE – active remote sensing measurement onboard the HALO aircraft

- The demonstration is discussed in EarthCARE-like aircraft observation: HALO field campaign.
- Combination of the lidar, radar, doppler, and imager in the EarthCARE mission will allow process study for vertical structure and horizontal distribution of cloud and aerosols on global scales.
- Small-scale structures are underestimated in (relatively) course resolution of EarthCARE.
- Future plan of field campaign for validation is also introduced.

5. Florian Ewald (DLR)

Preparing for EarthCARE – Representativity of air- and spaceborne radar-lidar measurements

- Discussion on the representativity of data obtained in local validation campaigns as well as global spaceborne observations and difference among instrumental platforms.
- Comprehensive analysis across HALO/ERA5/A-Train with different horizontal resolutions was presented.
- Specifically, retrieved ice cloud statistics such as ice water content and particle sizes were focused on.

6. Mario Mech (U. Cologne)

Passive and Active Microwave Transfer (PAMTRA): a tool to simulate observations from space, air, and ground

- A new simulator PAMTRA: more accurate hydrometeors, more detailed absorption and scattering, more user friendly
- Doppler spectrum and polarized brightness temperature can be estimated.
- This was applied to a case of cold outbreak streak clouds over ocean, discussed together with LES simulations and aircraft observations.

Session summary, discussion, and take-home messages

1. How to use space-borne Doppler velocity with noise?

- For GCMs (coarse-resolution with much subgrid process), climatological approach.
- For GSRMs (fine-resolution with less subgrid process), event based approach.
- Simulator is the bridge among process study, observation and GCM/GSRMs.

2. Uncertainty in simulator: size distribution, fall velocity, subgrid process ...

- How should the model and simulator be consistent?
- How should the subgrid generator be constructed?

3. How to validate the retrieval procedures?

- How can we maximize the validation of the EarthCARE mission field campaign datasets, especially with aircraft observations?
- To what extent are the observations representative of the real world?
- 4. Is Machine Learning useful? (optional)
 - 'Fast emulator/simulator' is proposed (by Pavlos, and Arlindo day2)
 - What other uses are possible?